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USING A SMOOTHING AVERAGING OPERATOR

TO EVALUATE MACROSCOPIC PARAMETERS

IN STRUCTURALLY INHOMOGENEOUS MATERIALS

UDC 539.3A. L. Svistkov and S. E. Evlampieva

A smoothing averaging operator is used in passing from structural to macroscopic modeling of the
stress–strained state of an article from a composite material taking into account finite strains. A
model is constructed using an integral operator, in which the macroscopic laws of conservation of
energy and mass and the equation of motion have the ordinary form used to describe processes in
homogeneous materials. As an example, macroscopic parameters are evaluated in a system consisting
of an ensemble of inclusions in an infinite matrix.

Key words: integral operator, averaging, macroscopic parameters, structurally inhomogeneous
materials.

Introduction. Conversion from modeling of the properties of a medium at the structural level to modeling
of the properties at the macroscopic level can be implemented using the hypothesis of macroscopic definability (in
which each point of an article is associated with a composite sample of large size in a macroscopically homogeneous
state). This approach to constructing macroscopic models involves the following difficulties. Averaging of the state
variables of a material (without a detailed analysis of the results of averaging of the constitutive equations for the
material in a macroscopically inhomogeneous state) does not allow one to establish whether higher level concepts
are correctly introduced and whether the conservation laws are obeyed in determining macroscopic quantities. It is
difficult to establish which deformation measure and which stress tensor (Cauchy, Piola, Kirchhoff, etc.) should be
averaged.

Use of the operator method to pass from the constitutive equations of the structural level to macroscopic
constitutive equations allows one to analyze the properties of both the operator itself and the macroscopic model
obtained as a result of applying this operator. In this approach, the case in point is an analysis of the macroscopic
model obtained rather than a correct formulation of a hypothesis (choice of a method for calculating the macro-
properties and the form of macroscopic equations). Integral averaging operators of the constitutive equations of a
medium have been widely used to describe macroscopic processes in multicomponent systems [1–4].

At present, various theories of integral operators have been proposed and the possible regions of their
application have been explored. It has been shown that wavelet analysis [5, 6] is an effective means of image
filtering intended to distinguish structures of a specified scale level. Using the resolvent-point imaging technique
[7–10], it is possible to construct effective meshless algorithms of solving boundary-value problems.

In the present study, we propose to use an integral averaging operator with a smoothly varying differentiable
kernel. It can be applied to obtain smooth macroscopic images of fields of structural state variables of a material.
An algorithm for examining the average properties of a medium is given below. Initially, it is elucidated why a
particular smoothed quantity can be called macroscopic and whether it can be correctly used in the macroscopic
laws of conservation of energy and mass and equations of motion. Next, it is checked whether function relations can
be established between smoothed parameters. If such relations exist, smoothed state variables or their combinations
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should be called macroscopic state variables and the function relations should be called the macroscopic properties
of the medium.

Operator of Evaluation of the Macroscopic State Variables of a Material. An operator that sets
up a correspondence between a state function at the structural level a(t,x) and a value â(t, x̂) by means of a map

â(t, x̂) =
∫

V−S

a(t,x)Φ(x̂− x) dV

will be called the operator of evaluation of the macroscopic characteristic â(t, x̂) of the composite material at the
point of space x̂ at time t. Here V is a volume of Euclidean space whose points are determined by the radius
vector x, x̂ is the radius vector of a point of space for which the value of the macroscopic quantity is determined.
It is assumed that the kernel of the integral vanishes with distance from the point x̂ exceeding the value of aΦ

and is a continuous differentiable function that satisfies the normalization condition
∫

V−S

Φ(x̂− x) dV = 1 and the

requirement that it does not depend on the orientation of basis vectors in space. In integration over the volume V ,
the domain of integration does not include the points of the interface S of the structurally inhomogeneous medium
at which the value of the integrand a(t,x) is not uniquely determined. When a point approaches the interface from
different sides, different limiting values are obtained for the function a(t,x).

The kernel Φ of the operator of evaluation of the macroscopic characteristics of the composite material
formulated above leads to the equality

∇Φ(x̂− x) = −∇̂Φ(x̂− x). (1)

Here the operators ∇ and ∇̂ are defined by the expressions

∇ =
3∑
i=1

ii
∂

∂xi
, ∇̂ =

3∑
i=1

ii
∂

∂x̂i
,

where ii are the basis vectors of a Cartesian rectangular coordinate system and xi and x̂i are the coordinates of the
vectors x and x̂ in the Cartesian rectangular coordinate system.

It can be shown that the fact that the kernel Φ is continuous and equal to zero at distance from the point
x̂ implies validity of the condition∫

V−S

bΦ∇ · c dV = −
∫

V−S

c · ∇(bΦ) dV +
∫
S

Φn · (bc− b̄ c̄) dS, (2)

where b = b(t,x) and c = c(t,x) are piecewise-continuous, piecewise-smooth scalar and vector functions, respec-
tively and Φ = Φ(x̂ − x). Integration over the surface S implies evaluation of the integral over all inner surfaces
of the article. The bar indicates that the values are taken on the interface on the side of the phase for which the
normal n to the surface S is inward. The lack of a bar above parameters indicates that their values on the interface
are taken on the side of the phase for which the normal n is outward.

The physical sense of the operator of evaluation of the macroscopic characteristics reduces to spatial averaging
of the structural parameter with a specified weight coefficient. The value of this coefficient depends on the distance
between the point of evaluation of the integrand and the point for which the value of the macroscopic parameter
is determined. The continuity and differentiability of the function Φ is required in order that the macroscopic
characteristics of the composite material be continuous and differentiable as a result of action operation of the
operator.

Macroscopic Law of Energy Conservation. We apply the operator of evaluation of the macroscopic
characteristics of a composite material to the energy conservation law formulated at the structural level in the
actual configuration:∫

V−S

Φ
( ∂
∂t

(
ρe+

1
2
ρ(v · v)

)
+∇ ·

(
ρev +

1
2
ρ(v · v)v

)
−∇ · (T · v)

)
dV = 0. (3)
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Here ρ is the material density, e is the mass density of the internal energy, v is the velocity, and T is the Cauchy
stress tensor. In what follows, the state variables ρ, e, v, and T are treated as functions of the arguments t and x
(the actual configuration is used). If for the kernel Φ, its dependence on the argument is not indicated, it is implied
that the kernel of the operator is represented as the function Φ = Φ(x̂− x).

Expression (3) contains inner macroscopic points of the article, i.e., the points x̂ separated from the outer
boundary of the article by a distance larger than aΦ. Therefore, in evaluation of the macroscopic state variables of
the medium, the effect of the boundaries of the article is ignored. The boundaries are located far enough from the
examined macroscopic point at which the kernel of the integral operator Φ vanishes.

Taking into account that the kernel of the operator Φ does not depend on time and using the property (2),
we obtain ∫

V−S

∂

∂t

(
Φ
(
ρe+

1
2
ρ(v · v)

))
dV −

∫
V−S

∇Φ ·
(
ρev +

1
2
ρ(v · v)v − T · v

)
dV

+
∫
S

Φn ·
(

(ρev − ρ̄ēv̄) +
1
2

(ρ(v · v)v − ρ̄(v̄ · v̄)v̄)− (T · v − T̄ · v̄)
)
dS = 0. (4)

The time derivative of the volume integral, whose domain of integration includes discontinuity surfaces of the
integrand, is determined from the expression

∂

∂t

( ∫
V−S

Φ
(
ρe+

1
2
ρ(v · v)

)
dV
)

=
∫

V−S

∂

∂t

(
Φ
(
ρe+

1
2
ρ(v · v)

))
dV

+
∫
S

Φ
(

(ρe− ρ̄ē) +
1
2

(ρ(v · v)− ρ̄(v̄ · v̄))
)
n · vs dS. (5)

The time variation of the volume integral of the piecewise-continuous function is equal to the sum of the volume
integral of the time derivative of the integrand and the integrals over the discontinuity surfaces of the function
taking into account the magnitude of the jump and the velocity of the discontinuity surfaces in space. The form
of the equation takes into account that the integrand is equal to zero at sufficient distance from the point x̂ in
volume V .

Let us consider composite materials in which the binder has a rigid connection with the filling agent. This
implies that the velocity of points of the inner interfaces (vs) is simultaneously the velocity of points of the binder
and the velocity of points of the filling agent; i.e., on the inner boundaries, the following condition is satisfied:

vs = v̄ = v. (6)

On the interface, the condition of equality of the acting forces is satisfied:

n · T̄ = n · T. (7)

From this, taking into account relations (5)–(7), we write expression (4) as

∂

∂t

( ∫
V−S

Φ
(
ρe+

1
2
ρ(v · v)

)
dV
)
−
∫

V−S

∇Φ ·
(
ρev +

1
2
ρ(v · v)v − T · v

)
dV = 0. (8)

Using the property of the kernel of the integral operator (1), we bring (8) to the condition

∂

∂t

( ∫
V−S

Φ
(
ρe+

1
2
ρ(v · v)

)
dV
)

+ ∇̂ ·
∫

V−S

Φ
(
ρev +

1
2
ρ(v · v)v − T · v

)
dV = 0, (9)

which includes averaged structural quantities and the macroscopic nabla operator.
Requirement of Satisfaction of the Galilei Principle for the Macroscopic Energy Conservation

Law. When additional uniform translational motion is imparted to all points of the article, this should not violate
the energy conservation law and change in the values of the macroscopic quantities. We consider the consequences
of this requirement using the results of [11]. For any constant vector v0, we require satisfaction of the equality
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∂

∂t

( ∫
V−S

Φ∗
(
ρ∗e∗ +

1
2
ρ∗(v∗ · v∗)

)
dV
)

+ ∇̂∗ ·
∫

V−S

Φ∗
(
ρ∗e∗v∗ +

1
2
ρ∗(v∗ · v∗)v∗ − T ∗ · v∗

)
dV = 0, (10)

where Φ∗ = Φ(x̂∗ − x), ρ∗(t,x) = ρ(t,x− tv0), e∗(t,x) = e(t,x − tv0), T ∗(t,x) = T (t,x − tv0), v∗(t,x) =
v(t,x− tv0) + v0, x̂∗ = x̂+ v0t, and the nabla operator is defined by the expressions

∇̂∗ =
3∑
i=1

i
∂

∂x̂i∗
, x̂∗ =

3∑
i=1

x̂i∗i.

Since the integration is performed over the entire volume of Euclidean space, we have∫
V−S

Φ(x̂∗ − x)a(t,x− tv0) dV =
∫

V−S

Φ(x̂∗ − tv0 − x)a(t,x) dV =
∫

V−S

Φ(x̂− x)a(t,x) dV.

From the physical point of view, dependence (10) is an extension of law (9) to the case of imparting translational
motion to all points of the system.

For further transformation of the macroscopic energy conservation law, we use the equalities
∂

∂t

( ∫
V−S

Φ(x̂∗ − x)a(t,x− tv0) dV
)

=
∂

∂t

( ∫
V−S

Φ(x̂∗ − tv0 − x)a(t,x) dV
)

=
∂

∂t

( ∫
V−S

Φ(x̂− x)a(t,x) dV
)
− v0 · ∇̂

∫
V−S

Φ(x̂− x)a(t,x) dV,

∇̂∗
∫

V−S

Φ(x̂∗ − x)a(t,x− tv0) dV = ∇̂
∫

V−S

Φ(x̂− x)a(t,x) dV,

and write law (10), grouping terms with the same powers of the vector v0:

1
2

[ ∂
∂t

( ∫
V−S

Φρ dV
)

+ ∇̂ ·
∫

V−S

Φρv dV
]
(v0 · v0)

+
[ ∂
∂t

( ∫
V−S

Φρv dV
)

+ ∇̂ ·
∫

V−S

Φρvv dV − ∇̂ ·
∫

V−S

ΦT dV
]
· v0

+
[ ∂
∂t

( ∫
V−S

Φ
(
ρe+

1
2
ρ(v · v)

)
dV
)
− ∇̂ ·

∫
V−S

Φ(T · v) dV

+ ∇̂ ·
∫

V−S

Φ
(
ρev +

1
2
ρ(v · v)v

)
dV
]

= 0. (11)

This equality holds for any value of the vector v0 only if in (11) the expressions in square brackets vanish:

∂

∂t

( ∫
V−S

Φρ dV
)

+ ∇̂ ·
∫

V−S

Φρv dV = 0; (12)

∂

∂t

( ∫
V−S

Φρv dV
)

+ ∇̂ ·
∫

V−S

Φρvv dV − ∇̂ ·
∫

V−S

ΦT dV = 0; (13)

∂

∂t

( ∫
V−S

Φ
(
ρe+

1
2
ρ(v · v)

)
dV
)
− ∇̂ ·

∫
V−S

Φ(T · v) dV

+ ∇̂ ·
∫

V−S

Φ
(
ρev +

1
2
ρ(v · v)v

)
dV = 0. (14)
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Determining the Macroscopic Quantities of the Material. We consider the dependences obtained.
According to the physical sense of the terms, it is necessary to introduce macroscopic notions so that equalities
(12)–(14) have the classic form of the law of conservation of mass

∂ρ̂

∂t
+ ∇̂ · (ρ̂v̂) = 0, (15)

the equation of motion
∂

∂t
(ρ̂v̂) + ∇̂ · (ρ̂v̂v̂)− ∇̂ · T̂ = 0, (16)

and the energy conservation law
∂

∂t

(
ρ̂ê+

1
2
ρ̂(v̂ · v̂)

)
+ ∇̂ ·

(
ρ̂êv̂ +

1
2
ρ̂(v̂ · v̂)v̂

)
− ∇̂ · (T̂ · v̂) + ∇̂ · ĥ = 0 (17)

at the macroscopic level. The last formula contains the macroscopic energy flux ĥ. Laws (15)–(17) at the macro-
scopic level are obtained from Eqs. (12)–(14) by introducing the following macroscopic quantities.

The macroscopic density of the material ρ̂ at an arbitrary point of Euclidean space at a current time is
reasonably determined by averaging the microstructural density ρ:

ρ̂ =
∫

V−S

ρΦ dV. (18)

The macroscopic velocity of the medium should be evaluated from the condition of equality of the macroscopic and
averaged structural momenta:

ρ̂v̂ =
∫

V−S

ρvΦ dV. (19)

If the macroscopic velocity is introduced by averaging the structural velocity of points of the material, the condition
of objectivity of the macroscopic model will fail. The law of conservation of macroscopic mass will be violated.

According to the above definitions, the macroscopic radius vector should be evaluated from the formula

x̂(t, x̂0) = x̂0 +

t∫
t∗

v̂(τ, x̂(τ)) dτ,

where x̂0 is the macroscopic radius vector at the current time t0. In contrast to the macroscopic quantities introduced
previously, the radius vector is found as the radius vector of the position of points of the macroscopic continuum
that corresponds to the field of macroscopic velocities rather than by averaging the corresponding structural vector
over any region of space.

The macroscopic stress tensor T̂ of the material is introduced by averaging the structural stress tensor and
the additional averaged term:

T̂ = −
∫

V−S

Φρ∆v∆v dV +
∫

V−S

ΦT dV.

Here

∆v = v(t,x)− v̂(t, x̂). (20)

To evaluate the macroscopic mass density of the internal energy of the material ê, it is expedient to use the
following statement. The sum of the macroscopic cubic densities of the internal and kinetic energies is the sum of
the corresponding averaged structural quantities:

ρ̂ê+
1
2
ρ̂v̂ · v̂ =

∫
V−S

(
ρe+

1
2
ρv · v

)
Φ dV.

Using formulas (18)–(20), we obtain

ρ̂ê =
∫

V−S

(
ρe+

1
2
ρ∆v ·∆v

)
Φ dV.
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In Eq. (17), the energy flux ĥ appears because the sum of the macroscopic energy fluxes and the flux of the
work performed T̂ · v̂ are equal to the corresponding averaged fluxes at the structural level:

ρ̂êv̂ +
1
2
ρ̂(v̂ · v̂)v̂ − T̂ · v̂ + ĥ =

∫
V−S

Φ
(
ρev +

1
2
ρ(v · v)v − T · v

)
dV.

It easy to see that the value of the macroscopic energy flux is defined by the expression

ĥ =
∫

V−S

Φ
(
ρe∆v +

1
2
ρ(∆v ·∆v)∆v − T ·∆v

)
dV.

In many practical problems, the value of the vector ĥ is small and is frequently set equal to zero.
The introduction of macroscopic state variables makes sense only if they can be used to construct a closed

system of constitutive equations, which is not always possible. The distribution of the state variables of the material
at the structural level and the averaging region (i.e., the quantity âΦ) should be chosen such that they allow one
to establish function relations between the macroscopic parameters of the medium and to describe the macroscopic
properties of the material using the corresponding equations.

Using an Averaging Operator to Analyze the Macroscopic Parameters of a Medium. We give
an example of using a smoothing averaging operator. For simplicity, we restrict ourselves to analysis of a plane
problem. Let us consider the problem of evaluating the macroscopic density and macroscopic stresses in a system
consisting of an incompressible matrix and 91 absolutely rigid inclusions of identical radius with centers at the
nodes of a regular triangular lattice (Fig. 1). At sufficient distance from the inclusions, the system is loaded by a
tensile stress in the x1 direction. The volume fraction of the filling agent in the ensemble is 0.5. The radii of the
inclusions are rpat = 1. We solve the problem for small strains. The behavior of the matrix material is assumed to
obey the isotropic Hooke’s law. The boundary-value problem of determining stresses at any point is solved by an
iterative method using the theory of functions of a complex variable [12].

As the kernel of the averaging operator Φ, we use the function

Φ(r) =


γ/a2

Φ, 0 6 r < aγ ,

γ[1 + cos (π(r − aγ)/(aΦ − aγ))]/(2a2
Φ), aγ 6 r < aΦ,

0, aΦ 6 r,

where r =
√

(x̂− x) · (x̂− x). The value of the parameter γ is determined from the normalization condition. An
increase in the value of the argument leads to a smooth variation in the function Φ(r) from the maximal value to
zero. Therefore, the points of Euclidean space located near the boundary of the domain of action of the integral
operator (for which r ≈ aΦ) practically do not participate in the formation of the value of the macroscopic quantity.
In the calculations (unless otherwise specified) we use the value of the constant aγ = 0.

The result of action of the averaging operator is the most obvious in evaluating the macroscopic density
of the medium. We explore the behavior of the function z = z(x1, x2), which show how the required macroscopic
density differs from the matrix density ρbin:

z = ∆ρ/∆ρc.

Here ∆ρ = ρ̂− ρbin and ∆ρc = ρinc − ρbin; the computation result is normalized using the difference ∆ρc between
the densities of the filling agent (ρinc) and the matrix (ρbin). Since we consider an ensemble of inclusions in which
the volumetric fraction of the filling agent is 0.5, the value of the function z in the ensemble should also be equal
to 0.5. This number is the control one in checking the solution obtained.

To perform calculations, it is necessary to choose a value of the parameter aΦ. For this, we determine the
values of aΦ for which the macroscopic density of the material in the ensemble considered can be calculated with
high accuracy. Figure 2a and b shows the function z = z(x1, x2) for aΦ = 5 and 10, and Fig. 2c and d shows the
constant level lines of this function with a step of 0.05 in the range of the function from 0.05 to 0.5. For aΦ = 5
(Fig. 2a), one can see a region with an effective density of the mass of the ensemble on the surface z. In this region,
the value of the function is nearly equal to 0.5, which is supported by the nature of the distribution of the constant
level lines (Fig. 2c). Between the region with an effective macroscopic density of the ensemble of particles and the
matrix there is a transitional region which ensures a smooth transition of the properties.

The plots of the function for aΦ = 10 (Fig. 2b and d) are similar to the plots obtained for aΦ = 5. The
difference is that the region with effective properties of the ensemble decreases, whereas the region with transitional
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Fig. 1. Geometry of a plane composite system (the dashed curve indicates the presumed macroscopic
region of space occupied by the ensemble of inclusions.)
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Fig. 2. Level surfaces (a and b) and lines (c and d) of the function z = z(x1, x2) for aΦ = 5
(a and c) and 10 (b and d); 1) matrix; 2) transitional region; 3) composite.
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Fig. 3. Behavior of the function z = z(x1, 0) for aΦ = 3 (a) and 5 (b).
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Fig. 4. Distribution of the effective shear modulus in the system with an ensemble of inclusions
along the r axis drawn to the x1 axis at angles of 0, 10, 20, and 30◦ and aΦ = 5 (a) and 10 (b).

Fig. 5. Behavior of the function z = z(x1, 0) for aγ/aΦ = 0 (1),
√

2/2 (2), and 0.99 (3).

properties increases considerably (Fig. 2d). In this case, the constant level lines are more similar in shape to circles
rather than to regular hexagons.

The use of the integral averaging operator to derive the macroscopic properties of an ensemble of inclu-
sions leads to the inference on the existence of a transitional region which ensures a smooth transition from the
characteristics of the matrix to the effective characteristics of the ensemble.

Figure 3 shows the central sections of the surface z = z(x1, x2) cut by the plane x2 = const for aΦ = 3
and 5. From Fig. 3 it follows that the macroscopic density in the ensemble of inclusions is determined with high
accuracy for aΦ > 5. Its small deviations (less than 0.01) from the value of 0.5 are hardly seen on the plot, whereas
for aΦ = 3, considerable deviations from the value of 0,5 are observed.

In the problem considered, the binder and particles of the filling agent are incompressible materials. Natu-
rally, at the macroscopic level, the volume of the composite cannot vary. It is of interest to evaluate the macroscopic
shear modulus Ĝ. We determine it from the formula

2Ĝ =

√
(σ̂1 − σ̂2)2 + (σ̂2 − σ̂3)2 + (σ̂3 − σ̂1)2√
(ε̂1 − ε̂2)2 + (ε̂2 − ε̂3)2 + (ε̂3 − ε̂1)2

,

where σ̂i and ε̂i are the principal components of the macroscopic stresses and macroscopic strains in the system.
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Figure 4 shows the variation of the macroscopic shear modulus Ĝ along the r axis drawn from the coordinate
origin at angles of 0, 10, 20, and 30◦ to the x1 axis. It is evident that at the center of the examined ensemble
of inclusions, the macroscopic shear modulus is a constant. This constant coincides with the effective modulus
calculated on the periodicity cell of the composite material with the centers of inclusions at the nodes of a regular
triangular lattice. At a distance from the center there is a smooth transition to the value of the shear modulus of
the elastic matrix. When the value aΦ = 10 is used in the averaging operator, the dependences Ĝ(r) practically
coincide (set of curves 2 in Fig. 4). This is explained by the fact that in the case considered, the shape of the region
occupied by the composite material is nearly circular. When the value aΦ = 5 is used in the averaging operator,
the curves are shifted relative to one another. This is due to the fact that the shape of the composite region of the
system is nearly hexagonal.

Figure 5 shows plots of the function z = z(x1, 0) for various values of the parameter aγ and a fixed value
of aΦ. For two of the examined values of aγ/aΦ, smooth plots of the function z = z(x1, x2) are obtained. For
aΦ/aγ =

√
2, a plot is obtained whose behavior exhibits the periodicity of the structure. This example indicates

that the choice of a smoothing operator and the dimension of the averaging region plays an important role and
depends on the type of composite material. The criterion for the applicability of the operator is the derivation of
macroscopic fields of state variables between which there are macroscopic relationships (it is possible to formulate
macroscopic equations of state of the medium).

Conclusions. Using integral operators to determine the relationship between the structural and macroscopic
levels of description of a composite material and the requirement of objectivity of the macroscopic formulation of
the energy conservation law, one can correctly introduce the macroscopic state variables of the material taking into
account finite strains of the material.

In a description at the macroscopic level, a distinct boundary between an ensemble of a finite number of
inclusions and the infinite matrix surrounding this ensemble does not exist. There is a smooth transition from the
effective properties of the ensemble to the properties of the matrix.

This work was supported by the Russian Foundation for Fundamental Researches (Grant No. 02-01-96404)
and the Department of Education and Science of the Perm’ region.
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